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even taking due account of environmental heterogeneity.  
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1. Introduction 

Since the 1980s, many countries have experienced market-oriented reforms in their electricity 

sectors (Wang and Chen, 2012). These reforms have been aimed at strengthening competition and 

improving efficiency. The vertically integrated power systems include segments for generation, 

transmission, distribution, and retailing. Market mechanisms have been introduced in the generation 

and retailing sectors to improve their operating and investment efficiency, but the transmission and 

distribution sectors are still regulated in most countries because of their natural monopoly 

characteristics (Joskow, 2014). The generation and retailing sectors have benefited from de-

regulation and competition, whereas by contrast for the natural monopoly networks, the adoption of 

effective incentive regulation (i.e. re-regulation) has been necessary to ensure efficiency 

improvements. China implemented a reform called “Separate power plants from grids” in 2002, 

which has been a success in the generation sector (Du et al., 2013; Zhao and Ma, 2013). This reform 

also proposed the separation of distribution from transmission when the circumstances are 

appropriate, but this proposal is still under discussion, even after recent reforms in 2015.  

Efficiency analysis has played a crucial role in defining adequate regulatory policies, especially 

in industries characterized by natural monopolies and/or by public ownership (Christian von 

Hirschhausen et al., 2006). The performance assessment of the grid industry has gained increasing 
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attention in recent years. For example, Christian von Hirschhausen et al.(2006), Nemoto and Goto 

(2006), and Ter-Martirosyan and Kwoka (2010) and Filippini and Wetzel (2014) have applied 

benchmarking techniques to measure the efficiency of network utilities, while Mullarkey et al.(2015) 

and Pérez-Reyes and Tovar(2009) further depict the efficiency change trends over time. One of the 

main assumptions underlying frontier analysis and technical efficiency measurement is that all the 

firms in an industry share the same production technology and face a similar operating environment. 

However, this is not entirely true for the grid industry, as it is an interconnected network and is more 

prone to the influence of the conditions of the operating area or technical characteristics (Cullmann, 

2012). If such heterogeneity factors are ignored, considerable bias can be created in the inefficiency 

estimates (Kopsakangas-Savolainen and Svento, 2011).  

There are two commonly used benchmarking methods to model frontier efficiency, namely data 

envelopment analysis (DEA) and stochastic frontier analysis (SFA). DEA is a non-parametric, 

deterministic programming model under which a frontier is constructed for each period, while SFA 

is a parametric, stochastic econometric model. The stochastic frontier models assume specific 

parametric functional forms for the production or cost frontiers, and use distributional assumptions 

on the noise and inefficiency components, but DEA models do not make such assumptions 

(Kumbhakar andTsionas, 2008). Moreover, the stochastic frontier model has the advantage of 

producing standard errors for frontier parameters and including environmental variables easily, and 

it is more applicable to a situation when heterogeneity factors are taken into consideration, due to 

its flexibility in dealing with time-variant efficiency specifications. It is used in various fields, 

including banks, sports and utilities, etc. (Barros andRossi, 2014; Battese et al., 2000; Gil-Alana et 

al., 2017; Li andLopez, 2016). 
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In the past few decades, a number of studies have been dedicated to evaluating the performance 

of power enterprises. Of these, Pollitt(1995) was the first one to apply SFA to efficiency 

benchmarking for the grid industry. Previous studies adopting stochastic frontier models involved 

three perspectives: decomposing efficiency into efficiency change and technical progress (See and 

Coelli, 2013; Tovar et al., 2011), estimating efficiency with dynamic stochastic models 

(Emvalomatis, 2011; Galán and Pollitt, 2014), and distinguishing heterogeneity in efficiency 

measurement (Coelli et al., 1999; Kopsakangas-Savolainen and Svento, 2011). Given the 

significance of the heterogeneity in efficiency measurement (Growitsch et al., 2012), this study will 

analyze the influence of both observed and unobserved heterogeneities on the operational efficiency 

of the grid industry. Although modeling heterogeneity in measuring efficiency in the electricity 

transportation sector has notable effects (Farsi et al., 2006a), studies focusing on this aspect are 

relatively rare. Kopsakangas-Savolainen and Svento(2011) analyzed the effect of observed and 

unobserved heterogeneity on distribution utilities in Finland. Galán and Pollitt(2014) found the 

existence of persistent high inefficiency in the Colombian distribution sector, and Llorca et al.(2016) 

demonstrated the influence of environmental factors on the efficiency of the US electricity 

transmission industry. As can be seen, most of the studies have just focused on the transmission or 

distribution sector; this study will explore whether their results are applicable to the integrated 

power grid system in China. 

Among environmental factors, the weather and geographic conditions are some of the most 

commonly debated factors that are perceived to affect the performance of utilities (Yu et al., 2009). 

Geographical, weather, and some unobservable factors vary with grid utilities and time, and the 

increasing adoption of incentive regulation and benchmarking of grid utilities requires close 
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attention to the role and treatment of such external factors. Domijan et al.(2003) found a significant 

correlation between power interruptions and weather parameters such as rain, wind, and temperature. 

Rothstein and Halbig(2010) indicated that many atmospheric and hydrological factors can affect 

electricity transmission, and Cambini et al.(2014) further demonstrated that the heterogeneity 

associated with contextual variables had significant effects on efficiency. However, it is argued that 

utilities often adapt their operating and investment practices to adverse environmental conditions, 

and hence the measured environmental effects may not be significant. Nillesen and Pollitt(2010) 

found that US electricity distribution firms that operated in unfavorable conditions often operated 

at best-practice levels before adjusting for environmental effects. By analysing the influence of 

weather variables on the efficiency of electricity distribution companies in Argentina, Brazil, Chile and 

Peru, Anaya and Pollitt(2017) found that on average there is a significant increase in measured efficiency 

when weather is incorporated. Whether environmental factors affect the efficiency of grid utilities is 

still a controversial issue in China. Since environmental variables are beyond the control of grid 

utilities, these variables should be controlled for in efficiency modelling. 

This study aims to analyze the performance of China’s grid system1 while taking into account 

the effect of observed heterogeneity, including geographic and weather conditions, as well as 

unobserved heterogeneity. It adopts alternative stochastic frontier models to estimate efficiency 

utilizing a panel dataset of 29 Chinese grid utilities for the period 1993–2014. With different 

specifications under which either (or both) of the observed or unobserved heterogeneity is taken 

                                                        

1 As mentioned above, the separation of distribution from transmission is still under discussion, thus the grid 

system here means utilities that operate and own both transmission and distribution businesses. 
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into account, we are not only able to examine the productive inefficiency of the grid firms and depict 

trends in the development of their efficiencies, but we can also identify whether the environmental 

factors are determinants of firms’ performance. To the best of our knowledge, this is the first 

empirical study measuring the operational efficiency of grid utilities in China that takes 

environmental factors into consideration, and the study is based on a more recent large-scale panel 

dataset covering almost all of China’s grid industry. In addition, this study is unique in two ways: it 

adapts the capital stock to better represent the resources the grid company is using, and it adjusts 

the network length comprehensively by taking the voltage levels as weights, which allows us to 

analyze the correlation between the operational efficiency and grid size. The rest of this paper is 

organized as follows. Section 2 provides an outline of the grid system in China. Section 3 describes 

the theoretical functions that we estimate as well as the empirical specifications of the estimated 

models. Section 4 illustrates the data and variables. Section 5 discusses the results obtained from 

those estimates and Section 6 presents the main conclusions. 

2. Development of China’s grid system 

China’s electric power industry has been growing at a rapid pace in recent decades in order to 

support the country’s economy, which has boomed as a result of increased industrialization and 

economic reforms. Figure 1 shows the rapid growth of China’s national electric power generation 

from 2002 to 2016. To keep pace with economic growth, the electricity supply industry has been 

reformed to dismantle the previous monopolistic structure of the industry and to provide incentives 

for its efficiency (Yeoh and Rajaraman, 2004). With the changes in the situation of power supply 
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and demand in recent years, promoting the quality and efficiency of electricity transportation has 

become one of the most critical issues facing the sector. Figure 1 also shows the development of 

network length for transmission and distribution circuits from 2002 to 2016. Indeed, annual 

investment in the transmission and distribution sector has exceeded that of the generation sector 

since 2014.2  

 

Starting in 1997, China began its market-oriented reforms in the power industry by establishing 

the State Power Corporation to oversee the business operations of the electricity system. Along with 

the abolition of the former Ministry of Electric Power, power industry regulations became part of 

the responsibilities of the State Economic and Trade Commission. Later, under the Scheme of the 

Reform for Power Industry issued by the State Council in 2002, the vertically integrated national 

monopolist that was the State Power Corporation was unbundled into five big generation 

                                                        

2 For a discussion of China’s most recent electricity reform see Pollitt et al.(2017).  

 

Fig.1 The development of China’s electric power sector from 1993 to 2016 
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corporations, two grid corporations, and four corporations operating the auxiliary businesses3.  

Even though China stated its plan to separate the distribution from the transmission sector4 in 

2002, it has not been put into practice yet. Most of the transmission and distribution businesses are 

mainly operated by two legally independent state-owned limited liability corporations, namely the 

China Southern Power Grid Corporation and the State Grid Corporation of China. The China 

Southern Power Grid Corporation is in charge of power grid construction, maintenance, power 

transmission, distribution, and sales in the five southern provinces5, and the State Grid Corporation 

is responsible for the same businesses in the other 26 provinces on the mainland6.  

China presents a particularly interesting case to study the effect of observed and unobserved 

                                                        

3 The five big generation corporations consist of China Huaneng Group, China Guodian Corporation, China 

Datang Corporation, China Huadian Corporation, and China Power Investment Corporation. The four corporations 

operating the auxiliary businesses are SDIC Huajing Power Holdings Co Ltd, Guohua Electric Power Corporation, 

China Resources Power Holdings Company Limited, and China General Nuclear Power Group. The two grid 

corporations will be introduced later in this paper. 

4 The electricity transmission utilities, in general, provide electricity transport services across long-distance high 

voltage wires, whereas the distribution utilities operate at lower voltages and connect to the final consumers. 

5 China South Power Grid Corporation operates the grid businesses in Guangdong, Guangxi, Guizhou, Yunnan, 

and Hainan. 

6 China’s grid system consists of six parts: The north regional grid branch operates the businesses in Beijing, 

Tianjin, Hebei, Shanxi, Inner Mongolia, and Shandong. The utilities in Liaoning, Jilin, Heilongjiang, and Eastern 

Inner Mongolia are managed by the northeastern regional branch. The east regional grid covers Shanghai, Jiangsu, 

Zhejiang, Fujian, and Anhui. The central grid branch covers Henan, Hubei, Hunan, Sichuan, and Chongqing. The 

northwest regional grid branch operates the business in Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang. Note that 

the power grid in the eastern Inner Mongolia is under the management of the State Grid Corporation of China, 

while the western part is managed by the Inner Mongolia Power Group Corporation, which is independent of the 

aforementioned two companies. 
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heterogeneity. First, it is a large country with unbalanced development of its regional economies. 

These disparities may affect network investment, infrastructure facilities construction, and the 

behaviors of the customers, all of which have indirect influences on the efficiency of the grid system. 

Second, macroeconomic policy may play a dominant role in the power grid. The desire of the 

government to stimulate provincial GDP via power sector investment may influence measured 

efficiency. Third, the grid system in China involves long-distance transportation as well as complex 

climatic and topographic conditions. Power interruptions and failure rates have significant 

correlations with weather parameters (Coelho et al., 2003; Domijan et al., 2003), and adverse 

landform characteristics can increase the difficulty of repairs and maintenance. A notable example 

was the heavy snow storm in southern China in 2008, which led to serious damage to electric 

network equipment. Although the financial and political characteristics are unobserved, whereas the 

climatic and geographic factors are observed, they may be correlated with each other, and result in 

reducing unobserved heterogeneity.  

For the power grid, heterogeneity has become more and more significant with the 

implementation of the “extending power coverage to every village” project and the construction of 

ultra-high voltage7 (UHV hereafter) power grids. The first project aimed at electrifying some rural 

areas that previously had absolutely no access to electricity. Related projects usually locate in areas 

with severe natural environmental conditions, which may result in lower operational efficiency. 

China has also devoted efforts towards raising the technology level of the power grids. Regarding 

                                                        

7 Ultra-high voltage power grids refer to super giant power grids that consist of ultra-high voltage backbone 

networks with 1000 kV alternating current transmission systems and 600 kV direct current transmission networks. 
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the second, the first commercial operating ultra-high voltage (UHV) project worldwide was 

completed in China in 2008. This gave China a leading role in the world in this technology. The 

network starts at the Changzhi substation in Shanxi and ends at the Jingmen substation in Hubei, 

thereby interconnecting the North China Power Grid and the Central China Power Grid. UHV power 

grids, bringing power from the net exporting areas in the west to importing areas in the east and 

south, can not only satisfy the need for long-distance transportation but can substantially improve 

the reliability and vulnerability of the network and further increase its efficiency as well. 

Simultaneously, it further increases the heterogeneities among grid branches, which may further 

broaden their efficiency gaps. 

3. Methodology 

3.1 The involvement of heterogeneity in stochastic frontier analysis 

SFA is a widely used frontier efficiency model that was introduced by Aigner et al.(1977) and 

Meeusen andvan den Broeck(1977); after this came the panel data models in the form of random 

(Pitt and Lee, 1981) and fixed effects (Schmidt and Sickles, 1984). However, it is hard to satisfy the 

strong assumptions stated in these models, in which inefficiency is time invariant and both 

inefficiency and noise terms are independently and identically distributed. Since the utilities may 

adapt their operating and investment practices over time to counteract the adverse effects caused by 

the environment, Kumbhakar(1990) and Battese and Coelli(1992) specified a quadratic and 

exponential function, respectively, to relax this time-invariant assumption.  

Even though these deterministic functions are able to describe the time path of efficiencies for 
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an industry on average, they cannot model firm-specific behavior by restricting the time paths to 

have the same structure across firms. Accordingly, extensions to the originally proposed stochastic 

frontier models were introduced, in which firm-specific heterogeneity can be modeled explicitly. 

Battese and Coelli(1995) expressed time-varying inefficiency as a function of the exogenous 

variables, but it is understandable that not all of the exogenous factors might be observable or 

quantifiable, and unobserved residual heterogeneity always exists. Greene(2005) then proposed an 

approach that integrates an additional stochastic term in both the fixed and random effects models 

to distinguish the unobservable heterogeneities from inefficiency. Kumbhakar et al.(2014) further 

split the time-invariant firm-specific term into two parts, one involving unobserved heterogeneity 

and the other representing time-invariant inefficiency. In this section, we specify alternative models 

for estimating the operational efficiency of grid utilities that take into account the observed and/or 

unobserved heterogeneity.  

3.2 Translog distance functions 

Efficiency is an index that is often employed to measure the relative performance of a decision-

making unit (company, region, etc.). It is usually defined as the ratio of the observed outputs to the 

potentially optimal values. To address the issue that basic stochastic frontier models can only solve 

single-output issues, we use multi-input, multi-output distance functions to estimate the relative 

efficiency of utilities in relation to the technical frontier. Since the outputs of grids are determined 

by electricity consumption and the number of customers, which are exogenous factors, and the main 

objective of a grid company is to minimize the inputs for given outputs, we measure firm-specific 

technical efficiency within an input distance function framework defined as: 
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      , , max | / , 1ID x y g ρ x ρ L y ρ    (1) 

where the input set  L y  represents all input vectors x  that can produce the output vector y , 

and   measures the maximum amount by which an input vector can be radially contracted while 

the output vector remains constant. The input distance function has the following properties: it is 

homogeneous of degree one and has a non-decreasing concave function of inputs and a non-

increasing quasi-concave function of outputs (Färe and Primont, 1995).  

The properties above allow us to calculate input-oriented technical efficiency (TE) as the 

reciprocal of the value of the distance function and gets values from 0 to 1, with a value of 1 meaning 

a firm operating on the frontier. Following Farrell(1957): 

   , , 1/ , , .I

ITE x y g D x y g  (2) 

Specifically, we use a more flexible translog function to parameterize the distance function. It is 

easy to calculate and allows the imposition of the homogeneous condition. For the case of M outputs 

and K inputs, the translog function is specified as follows (Coelli et al., 2003):  

0
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    

(3) 

where subscripts  1,2,...,i i N and  1, 2,...,t t T  denote the firm and time period, respectively, 

and
itv  is the normally distributed error term with variance 2

vσ , and , ,    and φ  are unknown 

parameters to be estimated. Homogeneity of degree one in inputs is imposed by the constraints: 

1

1,
K

k

k



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0, 1,2,...,
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k K

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K
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k
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
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Symmetry is given if the second order coefficients satisfy: 

,mn nmα α  , 1,2,...,m n M  and ,kl lkβ β  , 1,2,..., .k l K  (5) 



13 

 

In this study, we apply the SFA techniques to estimate the presented translog input distance function, 

and the feature of linear homogeneity allows us to normalize all the inputs in the distance function 

by a specific input Kitx  to make it easily estimated. 

 *ln ln ,ln ,Kit kit mit it itx TL x y t v u     (6) 

where  ·TL  is the translog input function form, and 
* /kit kit Kitx x x , lnit tu D  is a half normally 

distributed non-negative technical inefficiency term with mean 0 and variance 2

uσ . 

3.3 Specification of estimated models  

Most traditional studies focusing on inefficiency analysis assume that all decision-making units 

(DMU) share a similar operating environment, but this does not conform to reality, since the DMUs 

might be heterogeneous due to their individual characteristics, such as their resource endowments, 

institutional environment, and background level of economic development (Lin and Du, 2014). Both 

observed and unobserved heterogeneity would cause a bias in inefficiency estimation, so it is 

important to determine their roles in estimating the relative performance of utilities. This study 

employs a panel dataset of China’s grid utilities and applies five alternative stochastic frontier 

models to measure the level the inefficiency variance over time, which allows us to analyze the 

effect of heterogeneity represented by a set of environmental variables on the efficiency.  

The first estimated model (REH) proposed by Battese and Coelli(1995) is the most frequently 

used model in past studies. As this model assumes that the mean of the pre-truncated normal variable 

depends on external variables, it can investigate the influence of environmental variables on 

inefficiency. Although it is designed for cross-sectional data, it can readily be used for panel models 

(Kumbhakar et al., 2014).  
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where itz  is a vector of the environmental factors expected to influence the inefficiency. Regardless 

of the observed environmental factors, this model suffers from the issue that the unobserved 

heterogeneity still remains in the inefficiency term and is not distributed independently of the 

explanatory variables. Farsi and Filippini(2006) argue that if the unobserved heterogeneity exists, 

this model may overestimate the inefficiency.  

In order to address the unobserved heterogeneity bias, Greene(2005) developed the “true” 

random-effects (TRE) model with the addition of a firm-specific time-invariant random effect 

representing the unobserved heterogeneity among utilities; in this way, we can disentangle the firm 

heterogeneity from the technical inefficiency.  

   

   
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*

2 2
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ln ln , ln ,

~N 0, , ~ N 0, ,

~ N 0,

Kit i kit mit it it

it u it v

i

x TL x y t v u

u v iid

iid



     



 

 

 

 (8) 

where iω  is a normally distributed random term that captures unobserved individual characteristics. 

The TRE model usually performs better than the REH model as it can separate unobserved 

heterogeneity bias from the non-negative technical inefficiency term. 

This study extends the TRE model by adding the effects of environmental factors to get the 

third model, TREH1, which has a similar specification but the mean of the inefficiency is a function 

of the heterogeneity explaining covariate. The TREH1 model is then comparable to the REH model, 

with the main difference being that the former is estimated by a simulated maximum likelihood 

approach with no unobserved firm-specific effects considered, whereas the latter is estimated by a 

maximum likelihood approach when separating the unobserved heterogeneity from the inefficiency. 
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The third model is specified as follows: 

   
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 
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 



 

    
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 (9) 

All the models above treat the error term as homoscedastic; however, Kumbhakar and 

Lovell(2000) pointed out that ignoring the heteroscedasticity of the symmetric error term would 

lead to bias in estimating the technical efficiency. In order to determine the extent of the impact of 

the distribution hypothesis about the error term on the inefficiency, we further adopt the fourth 

model (TREH2) introduced by Alvarez et al.(2006) into our efficiency analysis. TREH2 includes a 

heterogeneity component into the variance of the distribution of inefficiency; in this way, both the 

pre-truncation mean and variance of the inefficiency term are involved in the environmental 

variables. 
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  

 (10) 

In the TRE models it is assumed that the unobserved differences across firms that remain 

constant over time capture the persistent unobserved firm level heterogeneity, rather than being 

understood as the inefficiency. Nevertheless, it may be argued that the firm-specific term may 

capture the possible time-invariant structural or persistent component of the inefficiency. If there is 

a possibility of a time-invariant structural element in the inefficiency, Greene’s model may 

underestimate the overall inefficiency and the fifth model (GTRE) proposed by Kumbhakar et 

al.(2014) may be useful: 
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 (11) 

The GTRE model overcomes the aforementioned problems by decomposing the time-invariant 

component into a firm effect and persistent inefficiency, the inefficiency then consists of a time-

invariant part iη  and a time-varying part 
itu , while the rest are the unobserved permanent firm-

specific heterogeneity  iω  and the noise term  itv . This model can be estimated in three steps as 

described in Kumbhakar et al.(2014). 

The main features of the five models specified above are summarized in Table 1. The models 

are different in the way they model the observed and unobserved heterogeneity, and as there is no 

prior knowledge of the superiority of these models in efficiency measurements, here we apply them 

to the same dataset with the aim of analyzing the extent to which inefficiency is sensitive to different 

models. Explicit allowance for heterogeneity likely overestimates efficiency whereas failure to 

allow for heterogeneity is likely to underestimate efficiency. To some extent, TREH2 model usually 

performs better than REH, TRE and TREH 1 models in discriminating the heterogeneity component, 

while GTRE is good at analyzing the time-invariant firm specific heterogeneities. It is hard to 

compare the results of REH2 and GTRE, which may provide more information than other models. 
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4. Data and samples 

The data used in this study consist of a panel of 29 provincial grid companies8, covering a 22-

year period from 1993 to 2014. As there are only several small local grid companies in Shanxi, Jilin 

Sichuan, Guangxi and other provinces that are not included in this study, the studied samples serve 

about 98% customers of China’s grid sector whose electricity consumption amounts to 98.5% of 

the national total. The data mainly come from Chinese power industry statistics compilations, 

yearbooks for China Electric Power, State Grid Corporation, and Southern Power Grid Company, 

China Energy Statistics, China Statistics, and the China Meteorological Data Network. The dataset 

is an unbalanced panel with a total of 659 observations9.  

Pollitt(1995) pointed out that it might be desirable to take every specific factor of the company 

                                                        

8 This study does not include Tibet in the sample as it was not involved in the 2002 unbundling reform. The 

Chongqing and Eastern Inner Mongolia grid companies are also included after their establishment in 1997 and 

2009, respectively. Hong Kong, Macao, and Taiwan are also not included because of differences in their 

management mechanisms and the nature of their statistical reporting. 
9 For the missing data, we use the linear interpolation method to adjust. 

Table 1 

Summary table of the models estimated. 

Model Observed external heterogeneity Unobserved firm specific 

heterogeneity 

REH 
Observed environmental factors included in the mean 

of the distribution of inefficiency 
Not included in the model 

TRE Not included in the model Time invariant random component 

TREH1 
Observed environmental factors included in the mean 

of the distribution of inefficiency 
Time invariant random component 

TREH2 
Observed environmental factors included in the mean 

and variance of the distribution of inefficiency 
Time invariant random component 

GTRE Not included in the model 
Time invariant random component after 

removal of time invariant inefficiency 
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into account due to the complexity of the network, but with the limitation on the availability of data 

and the complexity of the models, we cannot cover all the aspects of the grid system. In this study 

we select two inputs and three outputs to specify the translog distance function. The inputs are labor 

 1x  and capital  2x . As there are no costs or income information for the employees of the grid 

industry in China, we adopt the number of employees as an approximation. Hattori(2002), 

Çelen(2013), and Kumbhakar et al.(2014) also took it as an input. Kumbhakar and 

Hjalmarsson(1998) defined the capital as the total transformer capacity, which is actually only part 

of the resources adopted, with the transport distance also constituting a significant part (Kumbhakar 

et al., 2014). Hossain and Karunaratne(2004) defined the capital input as the gross fixed assets 

aggregated from book values of various materials. However, the depreciation used in the accounts 

may not represent the real decline in the value of the capital assets (Kumbhakar et al., 2014). We 

measure here the capital input by the capital stock in the real value of 2000, which can better reflect 

the true value of capital. We adopt the perpetual inventory method (PIM) 10  just as Lin and 

Wang(2014) did, to calculate the capital stock level for the grid companies annually.  

The number of customers  1y   is chosen as the first output, including billed residential 

                                                        

10 The PIM was first applied by Goldsmith (1951), and it can be expressed as:  1 1t t t tK K I   where 

tK and 1tK   represent capital stock in year t and (t–1), respectively. tI  represents investment in year t , and 

t  represents depreciation rate in year t . This paper selects 1993 as the base year and sets the fixed assets price 

index in 1997 to 100. Following Ratification Methods for Western Inner Mongolia Power Grid Transmission and 

Distribution Approval Costs, the average residuals rate is set to 5% and the equipment life period to 25 years, so 

the average depreciation rate per year is (1–5%)/25=3.8%. Then we derive the fixed capital stock for grid 

companies from 1994 to 2014 by iteration. 
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customers and non- residential customers. This variable can reflect the number of connection points 

(Jamasb and Pollitt, 2003) and important differences in the average levels of consumption (Tovar et 

al., 2011). The second output is power delivered  2y , which is measured in megawatt-hours (MWh). 

These two variables are the most commonly used outputs in benchmarking electrical network 

utilities and are assumed to reflect the network connection and electricity supply of the grid sector 

(Neuberg, 1977). We also include the network length  3y  of the grid sector for transmission and 

distribution business as the third output, which is comprehensively calculated by taking the voltage 

levels as weights. This reflects both geographical spread (across space) and capacity to deliver (in 

terms of maximum amounts of power). For the same distance of physical network length, we take 

the voltage levels as weights to reflect not only the size of the transportation task but the organization 

of the services as well11.  

In addition to the above inputs and outputs, regulatory, geographic, climatic, and other 

conditions may all affect the performance of grid utilities (Growitsch et al., 2012), consequently, we 

incorporate another dummy variable as well as some weather and geographic variables into the 

following analysis. The dummy variable, denoted as unbundling  1d , may measure the impact of 

the unbundling policy on the grid companies (Çelen, 2013; Filippini and Wetzel, 2014). The policy 

was implemented in 2002, and most provincial grid companies had finished the reform by the end 

of 2003, so we set the dummy variable as 1 for all companies after 2004 and 0 otherwise. As for the 

environmental variables, Domijan et al.(2005) found that weather conditions, such as rainfall and 

                                                        

11 This study has only included the network 35kV above as the output, for an output of 100km length of 500kV 

network, it will be counted as 500kV*100km=50 GVm. 
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wind, are the most significant factors affecting the power outages. According to Llorca et al.(2016), 

it is more difficult to manage a firm operating in a region with bad weather where the wind speed 

and precipitation are high and the minimum temperature is low. We include these above mentioned 

factors such as the temperature range  1z , annual precipitation  2z , and wind speed  3z as the 

weather factors. A further correlation test also verify their effectiveness. In addition, we determine 

the influence of the topographic features, hence the proportion of mountains  4z is included as a 

geographic factor. The temperature variable is the annual maximum temperature minus the 

minimum temperature in degrees Celsius. The annual precipitation is the average of the annual 

precipitation in millimeters, and the wind speed is the average of the daily mean wind speeds. Since 

the grid utilities’ server areas may enclose large numbers of meteorological stations, the 

environmental data are collected from and represented by the capital cities of the corresponding 

provinces. It can be assumed that more adverse conditions appear when all the four environmental 

variables exhibit high values.  

Table 2 presents a summary of the descriptive statistics of the variables used in this study. 
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5. Factors affecting the efficiencies under different models  

5.1 Coefficients  

Table 3 presents the coefficients of variables and returns to scale based on our alternative 

models. All the variables included in the models are in logarithms and are normalized by their mean, 

with the exception of the dummy variable and the time period. Hence, the first-order coefficients in 

the model can be interpreted as the elasticity of the outputs. Just as we expected, the number of 

customers and network length have a positive influence (negative coefficients) on the operational 

efficiency12. Increasing customer numbers and network length would bring economics of scale and, 

ceteris paribus, further enhance the efficiency of grid companies. Even though the coefficient of 

power delivered has a negative influence (positive coefficient) on the operational efficiency, the sum 

of the coefficients of the number of customers, power delivered and network length is negative, 

which means the outputs are positive correlated with the operation efficiency. The results coincides 

with Galán and Pollitt (2014), and Anaya and Pollitt(2017). The coefficient of unbundling is positive, 

which means that on the whole the unbundling reform has decreased the efficiency of the power 

grid system.  

                                                        

12 Though some positive coefficients appear in the model except TREH2, they are not significant on 10% level. 
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With regard to the external variables in the pre-truncated inefficiency component, we get positive 

coefficients for annual precipitation, wind speed and mountain rates, which illustrates that bigger 

observed values would generate lower levels of efficiency; similar results have also been obtained 

by Llorca et al.(2016). It is somewhat surprising to find that the temperature range gains a negative 

sign, indicating that for utilities that are operated in a region with a larger temperature range, it is 

easy to achieve higher efficiency. This result is reasonable to some extent because most regions with 

a larger temperature range are located in the north of China. The grids in these regions are usually 

designed to take into consideration the likelihood of extremely low temperatures. In addition, the 

customers in these regions have easy access to central heating services in the winter, which may 
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effectively prevent the excessive growth of electricity demand and result in relatively steady power 

consumption. These measures all benefit the operation of grid systems. In general, adverse weather 

conditions may block the improvement of efficiency, whereas the policy and grid design seem to 

have the ability to offset the negative effects of cold weather. As for the time trend, it seems that the 

negative value through the input distance function of TREH2 cannot counterbalance its negative 

value for the pre-truncation mean of inefficiency, which is also consistent with Llorca et al.(2016).  

5.2 Efficiency estimation based on different models 

Table 4 presents the basic statistics of the efficiencies under different models. The highest 

efficiency mean (0.795) occurs under the TREH2 model, while the lowest (0.594) occurs under 

GTRE. In general, the efficiency we get is a little lower than that of Li et al.(2016), which may be 

due to their ignoring several provinces with adverse environmental conditions and, accordingly, 

lower efficiency. These provinces included the Xinjiang Autonomous Region and the Yunnan and 

Hainan provinces of China Southern Power Grid Corporation.  

Results in Table 4 show that the model specifications may influence the average efficiency estimates. 

The REH model has lower efficiency scores than TREH1, Since the inefficiency in the former model 

is a compound of time-invariant firm-specific heterogeneity and “real” inefficiency, whereas the 

latter model separates them, it is reasonable that the first model has a relatively higher inefficiency 

and a correspondingly lower efficiency (Filippini and Wetzel, 2014). The efficiency under TREH1 

Table 4 

Statistics of efficiency under different models. 

 REH TRE TREH1 TREH2 GTRE 

Mean 0.764 0.783 0.787 0.795 0.594 

Std.Dev. 0.134 0.139 0.219 0.220 0.148 

Minimum 0.188 0.274 0.149 0.120 0.208 

Maximum 0.936 0.956 0.975 0.998 0.844 
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is lower than that of TREH2, but it is almost the same as TRE. This coincides with the results of 

previous studies that TREH2 usually reach more objective results (Filippini and Wetzel, 2014). Next, 

we turn to the last model, which has a lower efficiency score than all the models above. This result 

is predictable as well, since the GTRE model treats inefficiency as a mix of the persistent and 

transient part, and the addition of the persistent part leads to lower efficiency than those from the 

TRE models (Li et al., 2016).  

As for the divergence between the results of the models, the deviations between TREH1 and 

TREH2, which have taken both observed and unobserved heterogeneity into consideration, are 

larger than those of the other models, and their efficiency gaps have increased over the period. The 

lack of convergence in companies’ efficiency further illustrates the importance of accounting for 

firm-specific persistence parameters. Most of the observed heterogeneity, such as the weather and 

geographic conditions, is hard to improve, whereas the companies can strengthen their management 

to counteract the unobserved heterogeneities to some extent.  

This study also conducts Spearman correlation tests to investigate the consistency of the 

efficiency ranks for the different models, and the detailed information about the correlation matrix 

can be seen in Table 5. The low correlation coefficients between the models indicate that the 

efficiency ranks of grid utilities seem to differ significantly between the models. A possible 

explanation lies in the fact that the models impose different assumptions on the inefficiency 

distribution form and on the contents of the inefficiency term. The inconsistent correlation also 

reminds us that efficiency benchmarking analysis should be carefully conducted on the grid utilities, 

especially when the results for individual units are part of the determination of their allowed revenue 

by the regulator. 
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5.3 The influence of unbundling reform  

This study has compared the average posterior distribution of the operational efficiency of grid 

utilities before and after the unbundling reform. Figure 2 depicts the efficiency tendencies measured 

in different specifications. As can be seen, the results for different models vary significantly. There 

are no obvious trends in efficiency under models considering either observed heterogeneity (REH) 

or unobserved heterogeneity (TRE), and the efficiency of GTRE model has a similar trend except 

that the efficiency value is smaller. The models considering both observed and unobserved 

heterogeneity (TREH1 and TREH2) lead to continuous declining efficiency after the unbundling 

reform, indicating that the unbundling reform does not seem to create favorable conditions for the 

power grid utilities. Further, when the dummy variable is excluded from the analysis, the efficiency 

trends of TREH1 and TREH2 models are as shown in Figure A.1. The efficiency of TREH1 and 

TREH2 witness constantly increasing trends after excluding the dummy variable, and possible 

reasons for the different trends may come from the large cross subsidies that exist in China’s grid 

system(Li et al., 2017). It demonstrates that the unbundling reform has to be considered in the 

efficiency evaluation. In addition, the descending efficiency may be the result of other circumstances, 

including management and assessment, and may be traced to the extensions of the network into 

more challenging weather and geographical conditions. 

Table 5 

Spearman rank correlations between efficiency estimates. 

 REH TRE TREH1 TREH2 GTRE 

REH 1     

TRE 0.644
*
 1    

TREH1 0.220
*
 0.300

*
 1   

TREH2 0.330
*
 0.374

*
 0.765

*
 1  

GTRE 0.621
*
 0.254

*
 0.195

*
 0.194

*
 1 

*: Significant on the 1%-level. 
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5.4 The efficiency differences between regions  

The grid corporations are classified into six groups, according to their regions, mentioned in 

Section 2, namely the Northeast China Power Grid, the Northwest China Power Grid, the Northern 

China Power Grid, the Central China Power Grid, the Eastern China Power Grid and the Southern 

Power Grid. Considering that the first three models are all special cases of the TREH2 model, this 

study only presents the results of the last two models. Figures 3 and 4 show the average efficiency 

of these groups over the study period under TREH2 and GTRE model, respectively. 

 

 
Figure 2.	Annual evolution of the grid utilities’ average efficiency for all models. 
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Figure 3. Average efficiency by groups of utilities under TREH2 model. 
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From Figure 3 and 4, it can be seen that the Northeast and Northwest China Power Grids show 

higher efficiencies during the study period, and the efficiency changes in the northern areas (the 

Northeast, Northwest, and Northern China Power Grids) are relatively small. However, some 

relatively developed regions usually have lower efficiencies, such as Tianjin, Guangdong and the 

Yangtze River delta region. It is a common phenomenon that capital investment is growing fast in 

these regions and suggests that there might be excessive investment, which contributes to the 

difficulty in improving the measured performance of grids. Excessive investment is the product of 

monopoly, however, it may have the advantage of improving GDP growth and service quality of the 

grids (which we do not consider due to a lack of data).  

Thus by contrast to the northern regions, the Southern Power Grid exhibits a significant 

decrease in efficiency after unbundling. This is mainly due to a decline in the ratio of customer 

numbers to capital input witnessed in the study period, as shown in Figure 5. The downward trend 

may also because of the following reasons. First, the underdevelopment of the economies in more 

than half of the southern provinces, such as Yunnan, Guizhou, and Guangxi etc., has put local 

companies at a disadvantage in measuring unobserved heterogeneity. Second, the lack of advanced 

 
Figure 4. Average efficiency by groups of utilities under GTRE model. 
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stability in power sources such as thermal power, together with the higher rate of interregional power 

dispatching, has impeded the improvement of efficiency to some extent. Third, all of these provinces 

are located in relatively harsh conditions where the rates of mountainous terrain are higher, which 

poses additional operational challenges. The efficiency of the branches of the Southern Power Grid 

group even dropped during the power-hungry period after the unbundling reform, which suggests 

that the Southern Power Grid branches need to do more to enhance their efficiency, and the 

government should place more emphasis on incentive regulation in these provinces.  

6. Conclusions 

In recent years efficiency analysis has been widely used in designing reforms and benchmarking 

the performance of grid utilities. China implemented the unbundling reform of separating power 

plants from grids in 2002 with the aim of improving the service quality and promoting competition. 

This study has adopted alternative stochastic frontier models to investigate the impact of observed 

heterogeneity, in terms of weather and geographic factors, and unobserved heterogeneity on the 

performance of grid utilities before and after the unbundling reform.  

 
Figure 3. Average efficiency by groups of utilities under TREH2 model. 
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Both the observed and unobserved environmental heterogeneities need to be taken into account 

in measuring the efficiency of the grid industry. We first apply the conventional REH and TRE 

models, which capture observed and unobserved heterogeneity, respectively. By combining these 

two features, models TREH1 and TREH2 are estimated with different assumptions about the 

inefficiency term. In another version of the extended model (GTRE), the inefficiency consists of 

two parts: time-varying and time-invariant parts. These results indicate that the estimated 

efficiencies are sensitive to model specification, and the models considering both observed and 

unobserved heterogeneity (TREH1 and TREH2) have a larger divergence than the others. The 

efficiency rank orders are quite different among the different models; thus, an efficiency-based 

regulation scheme should consider the role of benchmarking carefully. The lack of convergence in 

efficiency illustrates the necessity of taking firm-specific heterogeneity into consideration.  

In addition, whatever model is selected, the number of customers and the network length are 

demonstrated to have positive impacts on the utilities’ efficiency, and the effects of these two factors 

and power delivered is also positive. This is because the marginal inputs required to support the 

growth of customers, the extension of the network are limited, and economies of scale exist in 

China’s grid industry. In general, regardless of whether observed or unobserved heterogeneity is 

included or not, the results from the alternative models all indicate the existence of economies of 

scale. This may be explained by the industry’s natural monopoly, which calls for sustained public 

intervention and incentive-based monopoly regulation. As a result, further unbundling reform to 

introduce competitiveness and adjust the firms to proper scale will be a long-term project for the 

grid industry. Though we note that our sample bundles transmission and distribution, which may 

have different optimal scales (e.g. larger for transmission than distribution). It also ignores lower 
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voltages which may also have a different – smaller - optimal scale. The results also indicate that 

adverse weather and geographic conditions are indeed obstacles to be overcome on the path towards 

the efficient operation of China’s grid utilities. 

Finally, there is still room to improve China’s grid system’s relative performance, and more 

management effort and more effective policies should be put into practice to address apparent 

provincial under-performance. With regard to the unbundling reform of 2002, this study has found 

no evidence of significant improvements in efficiency (though we do not focus on the different but 

related issue of general productivity effects), although large differences in efficiency have been 

found among companies. The differences may have arisen because of the drive to meet investment 

targets and demand requirements and/or from China’s strong intervention in the grid industry. In-

depth analysis of the regional efficiency differences shows that the Northeast and Northwest China 

Power Grids show higher efficiencies, but the China Southern Power Grid witnesses a significant 

decrease after the unbundling reform. Thus, the independently operating China Southern Power 

Grid Corporation needs to consider the reasons behind its relative decline in performance since 2002. 

One of the practical ways is to implement regional specific policy reforms or pilot projects in a few 

provinces, so that lessons for national policy can be learned and regulatory decisions can be made 

more scientifically. 

This study has some limitations of course. Operational cost information is not available for grid 

companies in China, so it is regrettable that the operational performance of firms was evaluated 

without including the effect of environmental heterogeneity on financial cost. Further studies could 

also add other extreme weather conditions and geographic factors to the sample and conduct 

dynamic stochastic frontier models. 
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Appendix 

 

Figure A.1. Annual evolution of the grid utilities’ average efficiency for TREH1 and TREH2 

models after excluding dummy variable. 
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